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Persistence inq-state Potts model: A mean-field approach
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We study the persistence properties of theT50 coarsening dynamics of one-dimensionalq-state Potts model
using a modified mean-field approximation~MMFA !. In this approximation, the spatial correlations between
the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the
mean densityP(t) of persistent spins is imposed. For this model, it is known thatP(t) follows a power-law
decay with time,P(t);t2u(q), whereu(q) is the q-dependent persistence exponent. We study the spatial
structure of the persistent region within the MMFA. We show that the persistent site pair correlation function
P2(r ,t) has the scaling formP2(r ,t)5P(t)2f (r /t1/2) for all values of the persistence exponentu(q). The
scaling function has the limiting behaviorf (x);x22u (x!1) and f (x)→1 (x@1). We then show within the
independent interval approximation~IIA ! that the distributionn(k,t) of separationk between two consecutive
persistent spins at timet has the asymptotic scaling formn(k,t)5t22fg(t,k/tf), where the dynamical expo-
nent has the formf5max(1/2,u). The behavior of the scaling function for large and small values of the
arguments is found analytically. We find that for small separationsk!tf,n(k,t);P(t)k2t, where t
5max@2(12u),2u#, while for large separationsk@tf, g(t,x) decays exponentially withx. The unusual dy-
namical scaling form and the behavior of the scaling function is supported by numerical simulations.
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I. INTRODUCTION

In recent times, the notions of persistence and the ass
ated persistence exponent has become one of the active
ics of research in nonequilibrium physics@1#. In general, the
persistence probabilityP(t) is the probability that a stochas
tic variablef(t) remains above or below a certain arbitra
value ~say, its initial value! for a time interval@0:t#. The
idea of persistence is particularly relevant in coarsening s
tems, whereP(t) has the natural interpretation of being th
fraction of space in the system which remains in the sa
phase, starting from a random initial configuration. In the
systems~as in some other systems also!, P(t) typically de-
cays as a power law at larget, with an exponent that is
nontrivial to compute and does not appear to be simply
lated to other known exponents that characterize the proc

The coarsening dynamics of the one-dimensionalq-state
Potts model at zero temperature is one of the few ca
where the persistence exponentu(q) is known exactly. The
solution was provided by Derridaet al. through a mapping of
the process to a coagulation model in steady state@2#. It was
shown that at late timest, well beyond the time scale o
equilibration, the fraction of persistent spins left in a fin
system of linear dimensionL scale as Pq(t@L2,L)
;L22u(q), whereu(q) is given by the nontrivial expressio

u~q!52
1

8
1

2

p2 Fcos21S 22q

qA2
D G 2

. ~1!

For timest!L2, it follows that Pq(t);t2u(q). An inter-
esting question in this context is about the spatial distribut
of spins which are persistent up to any given timet. Clearly,
in a many-body process like the time evolution of Po
model, the probability that a given spin is persistent
1063-651X/2003/67~2!/026115~9!/$20.00 67 0261
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closely linked to the state of other spins. This interdep
dence of spins is crucial as it makes the time evolution at
single site strongly non-Markovian, which makes the co
putation of the persistence exponent highly nontrivial.
study of the spatial aspects of the persistence problem
therefore, important from the point of view of developing a
intuitive understanding of the phenomenon, and also illum
nates the interplay between persistence decay and the u
lying domain coarsening process.

The spatial distribution of persistent sites and its tim
evolution have been studied previously through numer
simulations in one-dimensional~1D! diffusion equation@3#,
q-state Potts model@4–7#, two-dimensional Ising model@8#,
and one-dimensional Ising model with parallel dynamics@9#.
An analytic study using a rate equation approach under
independent interval approximation~IIA ! has been carried
out for one-dimensionalA1A→B model, which is closely
related to 1D Ising model@6#. It is now generally understood
from physical arguments and simulations that for a coars
ing process ind dimensions where the characteristic leng
scale has the power-law growthL(t);t1/z, the set of persis-
tent sites forms a fractal structure with fractal dimensiondf

5d2zu over length scalesr !t1/z @7,10#. The distribution is
homogeneous beyond this length scale. Furthermore, s
df>0, the distribution is expected to be homogeneous o
all length scales ifu.d/z. This has important consequenc
for systems like the Potts model whereu changes with the
Potts stateq. In particular, for Potts model ind51, Bray and
O’Donoghue@7# argued that a transition from fractal to ho
mogeneous distribution occurs asu crosses1

2 . This transition
is also marked by an abrupt change in the dynamical ex
nent characterizing the separation between persistent s
The characteristic length scale was conjectured to have
unusual dynamical scaling formL(t);tf with f
©2003 The American Physical Society15-1
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5max(12,u). This conjecture based on physical argume
was supported by numerical simulations@7#.

In this paper, we use a mean-field approach to address
problem of spatial distribution of persistent sites inq-state
Potts model. The essential idea behind this approach i
follows. It is well known that theT50 coarsening dynamic
of the q-state Potts model can be mapped to a react
diffusion process. In this process, the interfaces between
ferent species of Potts spins are represented by diffusing
ticles A, which annihilate or coagulate upon meeting w
q-dependent probabilities. In the mean-field approach, th
diffusing particles are treated as homogeneously distribu
with ~time dependent! density equal to the average density
the original reaction-diffusion problem. This approach h
been discussed in some earlier works as a heuristic argu
@11# and as a toy model for persistence@12#. We argue that
this approach yields a lower bound for the persistence ex
nent in the Potts model. We then construct an artificial mo
which is devoid of spatial correlations among diffusing p
ticles, but with persistence exponent tuned to be exa
equal to the Potts model value. We refer to this model as
modified mean-field approximation~MMFA ! and use this ap-
proximation to study the spatial distribution of persiste
sites inq-state Potts model.

We outline our main results at this point. Within th
MMFA, we show analytically that the correlation length fo
the spatial distribution of persistent spins scales asj(t)
;t1/2 and the equal time pair correlation functionP2(r ,t)
~defined as the probability that the spin at origin and
point r are persistent at timet) has the scaling form
P2(r ,t)5P(t)2f (r /At) for any value ofu. This shows that
the persistent spins have a fractal distribution withdf51
22u over length scalesr !t1/2 whenu, 1

2 , but df50 when
u> 1

2 . We find that the characteristic length scale of the s
tial distribution of persistent spins has the unusual sca

form L(t);tf, wheref5max(12,u), in agreement with the
conjecture in Ref.@7#. The empty interval distribution itsel
has the scaling formn(k,t)5L(t)22g@ t,k/L(t)#, where
g(t,x);t2cx2t for x!1 and decays exponentially withx
when x@1. The exponentsc and t depends onu through
the relations c5u(2u21)H(u2 1

2 ) and t5max@2(1
2u),2u#, where H(x) is the Heaviside step function. W
support these results with numerical simulations.

The paper is arranged as follows. In the following secti
we outline the mean-field approach. In Sec. III, we introdu
the MMFA and compute the pair correlation and empty
terval distribution of persistent sites to characterize their s
tial distribution. These predictions are compared with
results of numerical simulations in theq-state Potts model in
Sec. IV. We summarize our results and present our con
sions in Sec. V.

II. THE MEAN-FIELD APPROXIMATION

In the zero temperature coarsening dynamics ofq-state
Potts model ind51, the interfacial points between differen
species of Potts spins perform independent random walk
the lattice and annihilate each other with probability 1/q
02611
s

he

as

-
if-
ar-

se
d,

s
ent

o-
el
-
ly
e

t

e

-
g

,
e
-
a-
e

u-

on

21), or coagulate with probability (q22)/(q21). In the
process, persistent sites are ‘‘wiped out,’’ and the surviv
random walkers build up spatial correlations among the
selves. The distribution of intervals between the survivi
random walkers at any~sufficiently late! time t is described
by a ~stationary! scaling function which is known exactly fo
all values ofq @13#. The average densityn(t) at timet decays
as

n~ t !.
q21

q

1

A2pt
~2!

asymptotically@13#. The essential idea behind the mean-fie
~MF! approximation is to treat the random walkers as for
ing a homogeneous background of average densityn(t), as
far as the persistent sites are concerned. We define the
sistence probabilityP(t) as the probability that the site at th
origin is unvisited by any walker till timet. Then, the prob-
ability that the site the probability that the site is visited by
walker between timet and t1dt is 2]P(t)/]t. Let R(x,t)
be the probability that the site at origin is visited by a walk
for the first time at timet, whose initial position wasx at t
50. Within the MF approximation, any walker would su
vive with probability n(t), and the probability that it will
make a first visit to origin at timet is given by q(x,t)
5A2/p(x/t3/2)e2x2/2t @14#. It follows that R(x,t)
5n(t)q(x,t). We now integrateR(x,t) over all initial posi-
tions x and multiply by the probability that the origin i
persistent at timet, which is simplyP(t). So we find

]P~ t !

]t
52P~ t !n~ t !K1~ t !, d51, ~3!

where K1(t)5*2`
` q(x,t)dx is the Smoluchowski constan

@15# in d51. After substituting forq(x,t) andn(t), we find
]P(t)/]t52u* /tP(t), so that P(t);t2u* (q), and u* (q)
5(A2/p)(q21)/q is the persistence exponent within th
MF model @12#. It is interesting to compare the mean-fie
prediction foru with the exact value of the exponent. Fo
q52, u* (2).0.225, while the exact value from Eq.~1! is
3
8 . For the q5` case, the MF model predictsu* (`)
.0.45, which is to be compared with the exact valueu(`)
51. Upon extending the comparison to the entire range
values ofq, it is clear that the mean-field treatment cons
tently underestimates the value ofu.

We now argue thatu* (q) is, in fact, a lower bound for
u(q). In the mean-field approach discussed so far, it is
sumed that the random walkers disappear from the lattic
random at such a rate so that their average density fall
n(t). The actual reaction-diffusion process is quite differe
because only walkers which come very close to anot
walker are likely to be removed. Clearly in regions of spa
where walkers come close to each other, they are likely
visit the same site again and again. This effect is much m
within the mean-field approach, where the walkers actua
pass through each other, possibly several times before di
pearing. Thus, it is plausible that for the same average d
sity of walkers, a larger number of persistent sites will
5-2
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visited in the actual reaction-diffusion model, compared
its mean-field analogue. Since this is true for all times,
average density of persistent sites in mean-field theory
be higher than the same in the actual Potts model dynam
This would naturally imply that

u* ~q!<u~q!. ~4!

Interestingly, we show now that the mean-field argum
presented above yields the correct value for the persiste
exponent forA1A→B model ind52. This is not surpris-
ing, since for this model, the upper critical dimension isdc
52, and the mean-field treatment becomes exact above
dimension. It can be shown that ind52, the probability that
a random walker starting at an an arbitrary point crosse
circle of radiusa around the origin for the first time att is
given by the expression@16#

K2~ t !.
4pD

log~4Dt/a2!
, t@a2/D, ~5!

which is the analogue of Smoluchowski constant ind52.
The asymptotic particle density decay forA1A→B model
in d52 has the formn(t).(1/8p)@ log(Dt)/Dt# @17#. Upon
extending the MF arguments presented previously, we
that

]P~ t !

]t
52P~ t !n~ t !K2~ t !, d52, ~6!

After substituting forn(t) andK2(t), and taking the limit
a→0, we find thatP(t);t21/2 so thatu* 51/2 in d52.
This result is exact, as has been shown by a rigorous fi
theoretic calculation@11#.

We thus observe that while the mean-field approach
general, gives only a lower bound for the persistence ex
nent, it correctly identifies the essential features that bri
about this power-law decay, i.e., the diffusive motion of
terfacial points and the 1/At decay in their overall density. In
the following sections, we use a slightly modified version
this treatment to study the spatial distribution of persist
sites inq-state Potts model.

III. THE MODIFIED MEAN-FIELD APPROXIMATION

Our purpose is to use the mean-field approach to study
spatial distribution of persistent spins in theq-state Potts
model, and in particular, to understand the transition fr
fractal to homogeneous distribution asu crosses1

2 . However,
it may be noted that in the mean-field approximation to
dynamics of the Potts model, the largest value ofu ~attained
at q5`) is 2/Ap.0.45 which is less than the transitio
value 1

2 . This problem is circumvented by defining an arti
cial model where we define the diffusing particles as non
teracting random walkers, who can pass through each o
The model also allows for multiple occupancy of latti
sites. The dynamics consists of random walkers being pic
at random and taken out of the lattice at a time-depend
rate, which is tuned to produce power-law decayP(t)
02611
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;t2u8 with any arbitraryu8. From the arguments presente
in the preceding section, it is obvious that this would be
case if the average density were to decay asn(t)
;Ap/2(u8/At) asymptotically. By construction, this mode
is devoid of spatial correlations among reacting partic
~i.e., it is still mean-field! but u8 is now arbitrary. If we now
chooseu85u(q), this model is an approximation to th
q-state Potts model, with the simplifying feature that the s
tial correlation between interfacial points is now absent.
shall refer to this model as the MMFA for the original Pot
model.

A. Pair correlation for persistent spins within the MMFA

In this section, we compute the equal time pair correlat
function for persistent spins inq-state Potts model under th
MMFA. We defineP2(r ,t) as the probability that both the
site at origin and the site atr .0 are persistent at timet. Our
purpose is to computeP2(r ,t) for variousr.

The generalization of Eq.~3! to this case is

2
]P2~r ,t !

]t
52P2~r ,t !E

2`

r

Rr~x,t !dx, ~7!

whereRr(x,t) is the probability that a particle with initia
positionx(2`,x,r ) will make a first visit to the origin at
time t, without ever crossing rin the interval@0:t#. The factor
2 in front takes into account the probability that either of t
sites could be reached by one of the diffusing particles. U
like the first case,Rr(x,t) is now different forx,0 and 0
<x,r . For x,0, the constraint of no crossing atr is irrel-
evant for the computation ofRr(x,t), since to reachr, the
particle would have to cross the origin first. SoRr(x,t)
5R(x,t) simply for x,0, and so

E
2`

0

Rr~x,t !dx5
u

2t
. ~8!

For x.0, this is no longer true, andRr(x,t) needs to be
computed separately. The quantity that we need here
qr(x,t), the probability that a diffusing particle whose pos
tion at t50 is x, will reach the origin for the first time att,
without ever crossing the pointr in between. ThenRr(x,t)
5n(t)qr(x,t). To find qr(x,t), let us use the following stan
dard method. Consider a random walk starting from 0,x
,r at t50 with absorbing barriers at 0 andr. If the prob-
ability distribution of the positionz of the walker at timet is
ux(z,t), then

qr~x,t !5
]ux~z,t !

]z U
z50

. ~9!

The expression forux(z,t) is known exactly, and the
asymptotic form at larget @14# is

ux~z,t !5
1

A2pt
(

k52`

`

e2(z2x22kr)2/2t2e2(z1x22kr)2/2t

~10!
5-3
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from which, we find

qr~x,t !5
1

A2pt
(

k52`

`
x12kr

t
e2(z2x22kr)2/2t

2
x22kr

t
e2(z1x22kr)2/2t. ~11!

We note that forr @t1/2, the k50 mode is the dominan

term in the sum, and this givesqr(x,t)'A2/pt3xe2x2/2t

1 smaller terms that vanish as (r /t1/2)→`. Clearly in this
limit, we recover ther 5` term, as we should. It then fol
lows that

E
0

r

Rr~x,t !dx5
u

2t
GS r

At
D , ~12!

where

G~x!512h1 (
k51

`

2h4k2
2h (112k)2

2h (122k)2
, ~13!

with h5e2x2/2. After substitution of Eq.~8! and Eq.~12! in
Eq. ~7!, we find

]P2~r ,t !

]t
522P2~r ,t !

u

2t F11GS r

At
D G , ~14!

which admits a scaling solution of the form

P2~r ,t !5P~ t !2f S r

At
D , ~15!

and the scaling functionf (x) is given by the following ex-
pression:

x

2

] f

]x
52u f ~x!@12G~x!#. ~16!

Let us now consider the limiting behavior of the scali
function forx!1 andx@1. In the first case, it is clear from
Fig. 1 thatG(x)'0, and so (x/2)(] f /]x)52u f (x), which
implies that f (x);x22u as x→0. In the opposite extreme
G(x)→1 asx→`, and so (x/2)(] f /]x)'0, which means

FIG. 1. Plot ofG(x) vs x.
02611
that f (x) approaches a constant value in this limit. It is fu
ther clear that, from the definition of the scaling function
given by the Eq.~15!, this constant is unity, since we expe
P2(r ,t)→P(t)2 as r→`. For convenience of later calcula
tions, we approximate the scaling function as

f ~x!5H a2ux22u, x<a

1, x.a,
~17!

wherea is a number, of order unity.
We see that under the MMFA, the pair correlation fun

tion has a scaling form which is same for all values ofu,
with power-law decayP2(r ,t);P(t)r 22u for short distances
r !t1/2. As is well known, power-law decay of pair correla
tion function points to the underlying scale invariance of t
spatial distribution of the persistent spins. This is charac
istic of a fractal distribution under some circumstances.
see this, let us first defineC(r ,t)5P(t)21P2(r ,t), which is
the probability of finding a persistent spin at a distancer
from another persistent spin. Now, the integralM (R,t)
5*1

RC(r ,t)dr is the total number of persistent spins within
radiusR of a persistent spin. Clearly, from the scaling for
described above,M (R,t);Rdf for R!t1/2, where df
5max(122u,0). ForR@t1/2, we find thatM (R,t).RP(t),
which is simply a homogeneous distribution. Thus, if w
look at length scalesR!t1/2, there is a fractal structure whe
u, 1

2 . However, whenu> 1
2 , this scale-invariant structure i

replaced by a few isolated sites, whose number does
grow with the length scale of observation.

Clearly, the spatial distribution of persistent spins und
goes a transition asu crosses1

2 . Indeed, if we consider time
scales beyond equilibration timet@L2, for u, 1

2 the total
number of persistent spins left in the system scales asL122u,
whereas foru> 1

2 , there are only a finite number of persiste
spins left. This important difference is not adequately
flected in the pair correlation function, which has the sa
scaling form for all values ofu. In the following section, we
study another quantity to characterize the spatial distribu
which undergoes a rather significant change in its sca
properties across the transition. This quantity is the em
interval distribution, which is one of the standard tools in t
study of one-dimensional reaction-diffusion processes.

B. The empty interval distribution

An empty interval, in our convention, is the separati
between two consecutive persistent sites. The empty inte
distribution ~EID! n(k,t) is defined as the number of suc
intervals of lengthk at time t. For convenience, we als
divide this quantity with the system sizeN so thatn(k,t)
satisfies the following normalization conditions:

E
1

`

n~k,t !dk5P~ t !, E
1

`

kn~k,t !dk51. ~18!

Computing the EID directly, even under the mean-fie
approximation, is nontrivial. Instead, we shall compute
from the pair correlation function using the IIA, where th
lengths of successive empty intervals are considered as i
5-4
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pendent random variables. The IIA has been a valuable
in the study of one-dimensional problems, and has been
cessfully applied to study spatial distribution of persiste
spins in A1A→B model. Under the IIA, the relation be
tweenn(k,t) andP2(r ,t) is

P2~r ,t !5n~r ,t !1P~ t !21E
1

r

dx n~x,t !P2~r 2x,t !.

~19!

It is convenient to express this relation in terms of t
Laplace transformsC̃(p,t)5*1

`C(r ,t)e2prdr and ñ(p,t)
5*1

`n(s,t)e2psds, whereC(r ,t) was defined in the preced
ing section. Under these transformations, Eq.~19! maybe
expressed in the form

ñ~p,t !5
P~ t !C̃~p,t !

11C̃~p,t !
. ~20!

From the scaling form forP2(r ,t) given by Eq.~15!, we
find that

C̃~p,t !5P~ t !AtI ~q,t !, ~21!

where q5pAt, and I (q,t)5* t21/2
` f (x)e2qxdx The lower

limit is put as t21/2 instead of zero to take care of possib
small argument divergence in the scaling function.

Let us first consider the case, whereu, 1
2 : In this case the

scaling functionf (x) is integrable, so we put the lower lim
in the previous equation as zero. Using Eq.~17!, we find that

I ~q,t !5a2uq2u21g~122u,qa!1
1

q
e2qa, u,

1

2
,

~22!

whereg(a,x)5*0
xe2tta21dt is the incompleteg function.

After substituting in Eq.~20! and Eq.~21!, and taking thet
→` limit ~keepingq fixed!, we find

ñ~p,t !5t21/2F P~ t !t1/22
q

a2uq2ug~122u,qa!1e2qaG .

~23!

It follows that

n~k,t !5t21hS k

t1/2D , ~24!

so that

ñ~p,t !5t21/2@ t1/2P~ t !2h1~q!#, ~25!

which has the same form as Eq.~23!, and h1(q)
5*0

`h(x)@12e2qx#dx. After integrating by parts, we find

h1~q!52G~`!1q@ lim
x→0

xG~x!1G̃~q!#, ~26!
02611
ol
c-
t

whereG(x)5*x
`h(y)dy andG̃(q)5*0

`G(x)e2qxdx. We as-
sume thatG(x) is integrable, so that lim

x→0
xG(x)50 and

G(`)50. Finally, we have

G̃~q!5
1

a2uq2ug~122u,qa!1e2qa
. ~27!

Now we may try to deduce the behavior of the functi
G(x) at large and small arguments from its Laplace tra
form~LT! given by the previous equation. To find the beha
ior of G(x) nearx50, we use the standard formula@18#

lim
t→0

t2rg~ t !5 lim
s→`

sr11g̃~s!

r!
, r.21, ~28!

where g̃(s) is the LT of g(t). Now, for large q, g(1
22u,qa).G(122u), so thatG̃(q)5a22uq22u/G(122u)
as q→`. It follows that lim

x→0
x122uG(x)5a22u/(2u

21)!G(122u) from which we find

G~x!;
a22ux2u21

~2u21!!G~122u!
, x→0 ~29!

and, after using the relationh(x)52]G/]x,

h~x!;x22(12u), x→0. ~30!

The behavior ofG(x) at largex, one has to look for the
singularities ofG̃(q) in Eq. ~27!. If G̃(q) has a singularity of
the formG̃(q);(q2q* )2n, then upon inversion of the LT
it follows that G(x);xn21eq* x as x→` @18#. In order to
find the singularity, we plotted the denominator of Eq.~27!
against its argument~Fig. 2!. We find that the function
crosses zero at one point in the negativeq axis. By careful
numerical analysis using bisection method, we have de
mined this crossing point to be atq* a52l, where the nu-
merical constantl.0.32 for u5 3

8 and l.0.85 for u5 1
2 .

This implies that the leading term in the decay ofG(x) at
large x is exponential, i.e.,G(x);exp(2@l/a#x) as x→`,

FIG. 2. The figure shows the inverse ofG̃(q) plotted against
qa.
5-5
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with a possible power-law prefactor. Consequently, the s
ing functionh(x) also has similar exponential decay at lar
x.

h~x!;e~l/a!x, x@1. ~31!

We also determine the characteristic length scales of
distribution using the scaling form forn(k,t). These may be
defined as the ratios of moments of the distribution.

Lm~ t !5I m~ t !/I m21~ t !, m50,1,2, . . . , ~32!

where I m(t)5(kn(k,t)km are the moments ofn(k,t).
Clearly,L1(t)5P(t)21;tu by definition, whereas all highe
order length scales

L j~ t !;t1/2, j .1, ~33!

which follows from the dynamic scaling form given by Eq
~24!, ~30!, and~31! for n(k,t).

We now continue our study of empty interval distributio
for the case, whereu> 1

2 . Although the MMFA allows us to
study arbitrarily large values ofu, we restrict ourselves to
the regimeu,1, since our basic aim is to study the pers
tence inq-state Potts model, whereu(q)<1. Furthermore,
for q5` whereu51, n(k,t) can be found exactly@7# and is
known to be a pure exponential.

For 1
2 ,u,1, the scaling functionf (x) has a noninte-

grablex22u singularity nearx50 ~we do not study explicitly
the logarithmic singularity occurring foru5 1

2 ). We integrate
by parts and find

I ~q,t !5
a2u

2u21
@ tu21/2e2qt21/2

2a122ue2qa2q2u21

3g~222u,qa!#1
1

q
e2qa, u>

1

2
. ~34!

Let us now definel5p/P(t)5qt21/2P(t)21. For t→`
and finitel, we have

I ~q,t !5
a2u

2u21
tu21/21

1

lt1/2P~ t !
. ~35!

After substitution in Eq.~21! we find

C̃~p,t !5P~ t !F a2u

2u21
tu1

1

lP~ t !G . ~36!

We define the constantb5tuP(t)a2u/2u21, in terms of
which C̃(p,t)5b11/l. Now we substitute in Eq.~20! and
find

ñ~p,t !5P~ t !
b

11b F l1b21

l1~11b!21G . ~37!

Upon inversion of the LT, we find that

n~k,t !5P~ t !2f@kP~ t !#, ~38!
02611
l-

e

-

where

f~x!5
b

11b Fd~x!1
1

b~11b!
e2x(11b)21G . ~39!

The scaling function has a rather unnaturald-function sin-
gularity at the origin. However, a more careful analysis sh
that for any finite~but still large! time t, the divergence at
origin is only power-law, but with a different exponent tha
the previous case (u, 1

2 ). We start with the expression give
by Eq. ~21! and Eq.~34! for C̃(p,t). After keeping the lead-
ing finite t correction, we find that

C̃~p,t !5b1
1

l
2bt2u(2u21)l2u21. ~40!

For purposes that will be clear later, let us definem(k,t)
5kn(k,t) so that(km(k,t)51. We also define the assoc
ated Laplace transformm̃(p,t). The Laplace transforms ar
related through

m̃~p,t !52
]ñ~p,t !

]p
. ~41!

Using the expression Eq.~20! for ñ(p,t), we find that

m̃~p,t !52
P~ t !C̃8~p,t !

@11C̃~p,t !#2
, ~42!

whereC̃8(p,t)5]C̃(p,t)/]p, and is given by the expressio

C̃8~p,t !52
1

P~ t ! F 1

l2
1~2u21!bt2u(2u21)l2(u21)G .

~43!

After substitution in Eq.~42! and taking the limitt→`,
we find

m̃~p,t !5
11~2u21!bt2u(2u21)l2u

@11l~11b!#2
, ~44!

which gives the scaling forms

m~k,t !5P~ t !c@ t,kP~ t !#, n~k,t !5P~ t !2F@ t,kP~ t !#,
~45!

where

xF~ t,x!5c~ t,x! ~46!

by definition. The Laplace transform of the scaling functi
c(t,x) is

c̃~ t,l!5
11~2u21!bt2u(2u21)l2u

@11l~11b!#2
. ~47!

We notice that if the finitet correction term is not in-
cluded, lim

l→`
l2c̃(t,l) is finite, and in that case, the sma
5-6
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argument divergence ofc(t,x) will be sharper than any
power law. This is what is reflected in the appearance of
d function in Eq.~41!. However, when this term is included
the multiplying factor has to bel222u in order to make the
resulting expression finite asl→`. This implies that the
small x divergence forc(t,x) has the power-law form
c(t,x);t2u(2u21)x122u for small x. From Eq.~48!, we find
a similar power-law divergence inF(t,x) also,

F~ t,x!;t2u(2u21)x22u, x!1. ~48!

In the largex limit, F(t,x) becomes time independen
and decays exponentially withx as in Eq.~39!, i.e.,

F~ t,x!.
1

~11b!2
e2x/11b, x@1. ~49!

The characteristic length scales are easy to comp
From the scaling form, it follows that all the characteris
lengths have identical asymptotic scaling behavior,

L j~ t !;tu, j 51,2, . . . . ~50!

The difference in the asymptotic scaling behavior of t
characteristic length scale asu crosses1

2 may be seen as
competition between two length scales, the diffusive len
scaleLD(t);ADt which gives the mean separation betwe
two random walkers, and the persistence scaleLp(t)
5P(t)21;tu which is the mean separation between two p
sistent spins. The characteristic length scale is dominate
the larger of the two, i.e., we may write

L~ t !;tf, f5maxS 1

2
,u D , ~51!

whereL(t) is defined through the dynamical scaling for
for n(k,t),

n~k,t !5L~ t !22gS t,
k

L~ t ! D . ~52!

FIG. 3. The scaled pair correlationf (x)5P(t)22P2(r ,t) is plot-
ted against the dimensionless scaling variablex5r /At for q52 on
a logarithmic scale. The straight line is a guide to eye, and has s
2u(2)50.75 , which is the MMFA prediction. The timet is mea-
sured in MC steps and distancer is measured in units of lattice
spacing.
02611
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The scaling functiong(t,x)5h(x) when u, 1
2 and

g(t,x)5F(t,x) whenu> 1
2 . In general, the small argumen

behavior ofg(t,x) has the power-law form

g~ t,x!;t2cx2t, x→0, ~53!

where the exponentsc andt are given by

c5u~2u21!HS u2
1

2D , t5max@2u,2~12u!#,

~54!

and H(x) is the Heaviside step function. For largex, the
scaling function is time independent and decays expon
tially with x. We also note from the scaling form that ov
small distancesk!tf,

n~k,t !;P~ t !k2t, k!tf, ~55!

wheret is given by Eq.~54!.

IV. NUMERICAL RESULTS

We studied the quantitiesP2(r ,t) andn(k,t) numerically
by simulating the kinetics ofq-state Potts model with ran
dom initial conditions. The time evolution of spin configur
tions via Glauber dynamics is implemented using the m
ping of this dynamics to a reaction-diffusion problem,
mentioned in the Introduction. In this procedure, a set

pe

FIG. 4. Same as Fig. 3 forq55. The slope of the straight line is
2u(5).1.38, which is the MMFA prediction.

FIG. 5. Same as Fig. 3 forq510. The slope of the straight line
is 2u(10).1.67, which is the MMFA prediction.
5-7
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diffusing particlesA are initially distributed at random on th
lattice with a certain average initial densityn0 ~which we fix
as 1

2 ). When two diffusing particles meet, they annihila
each other or coagulate with probability 1/q21 andq22/q
21, respectively. We count one Monte Carlo~MC! step in
the simulation after the position of every particle in the l
tice has been updated once. Persistent spins~sites! at any
time t are those sites which have not been touched b
random walker till that time. All the simulations were don
on a lattice with 217 sites, and the results were averaged o
100 different starting configurations. In order to check t
different dynamic scaling behavior foru, 1

2 and u> 1
2 , we

did our simulations for three different values ofq52,5, and
10. For later reference, we note that from Eq.~1!, the corre-
sponding values of the persistence exponent areu(2)53/8
50.375,u(5)'0.6928, andu(10)'0.8310. In Figs. 3–5,
and later in Figs. 6–9, we have employed logarithmic b
ning of the data in intervals of size 1.5n (n51,2, . . . ) since
the statistical noise was considerable. However, for all ex

FIG. 6. The scaled EIDh(x)5tn(k,t) is plotted against the
dimensionless scaled separationx5k/At for q52 Potts model. The
excellent scaling collapse validates the scaling form given in
~24!. The straight line has slopet52@12u(2)#55/4, which is the
MMFA-IIA prediction. The time t is measured in MC steps an
distancek is measured in units of lattice spacing.

FIG. 7. The scaled EIDF(t,x)5tn(k,t) is plotted against the
scaled separationx5kP(t) on a logarithmic scale forq55 Potts
model. We see that the scaling function is explicitly time depend
for small k, but is time independent for largek. The straight line in
the figure gives the theoretical predictiont52u(5).1.38 for
power-law decay at smallx ~see discussion in text!. The timet is
measured in MC steps and distancek is measured in units of lattice
spacing.
02611
-

a

r
e

-

-

nent measurements, we have used only the bare~not binned!
data.

In Figs. 3–5, we have plotted the scaling functionf (x) for
the pair correlation functionP2(r ,t) against the scaling vari
abler /At for threeq values,q52,5, and 10. We find excel
lent scaling collapse for all three values ofq, which is in
agreement with the dynamic scaling picture provided by
MMFA in Eq. ~15!. In the figures, we find power-law deca
of f (x) for small x, with a sharp crossover to the flat long
distance behavior, which is also in agreement with the
sumption we made in Eq.~17!. We also note that the constan
a introduced in Eq.~17! is in fact very close to one.

In Fig. 10, we plot the characteristic length scaleL2(t)
against timet for q52,5 and 10 and measure the dynamic
exponentf. The observed slopes of the lines are system
cally higher than the theoretical prediction in Eq.~53! by
around 0.05, while the statistical error in all the three ca
was only;1024 or smaller. The observed deviation could b
possibly due to the fact that the asymptotic behavior is
fully reflected over the time scales which we used. The nu
ber of persistent spins left in the system falls rapidly w
time for high values ofq, and so we were forced to restric

.

t

FIG. 8. Same as Fig. 10 forq510. The straight line in the figure
gives the theoretical predictiont52u(10).1.67 for power-law de-
cay at smallx ~see discussion in text!. The timet is measured in MC
steps and distancek is measured in units of lattice spacing.

FIG. 9. In the figure,n(k,t)/P(t) is plotted againstk for two
widely separated values oft for each value ofq52,5, and 10~top to
bottom!. In all the cases, the function is independent oft for k
!tf, and shows the power-law decay;k2t. We measuret
.1.3260.03, 1.4160.04, and 1.6160.22 for q52, q55, andq
510, respectively. The corresponding MMFA-IIA predictions ar
to the same accuracy, 1.25, 1.38, and 1.66.
5-8
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ourselves to timest<32 000. In fact, even forq52 case,
previous simulations over longer time scales have shown
presence of an additive power-law correction to t
asymptotic scaling behavior@6#.

In Figs. 6–8, we check the dynamic scaling form Eq.~54!
for n(k,t) against the scaling variablex5k/tf for three val-
ues ofq52,5, and 10. We find that forq52, excellent scal-
ing collapse is obtained withf5 1

2 ~Fig. 6!. For smallx, we
find power-law decay of the scaling function, which cross
over to fast exponential decay at largex. For higher values of
q @whereu(q). 1

2 ], we find that withf5u, we find very
good scaling collapse forx@1. But for x!1, we find sys-
tematic deviation from scaling collapse, which was also
served earlier by Bray and O’Donoghue@7#. This observa-

FIG. 10. The figure shows the characteristic length scaleL2(t)
~measured in units of lattice spacing, definition in text! plotted
against timet ~measured as number of MC steps! on a logarithmic
scale for three Potts valuesq52, 5, and 10. The measured slop
of the lines are, respectively, 0.5507, 0.7391, and 0.8672. The
responding theoretical predictions are, to the same accur
0.5000, 0.6928, and 0.8310.
02611
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tion supports the theoretical prediction based on MMFA, a
shows that in this regime, the scaling function has expl
time dependence. To show this more clearly, and to ve
the predicted time dependence, we plotted the quan
n(k,t)/P(t) againstk for three widely spaced values oft for
all threeq values studied in Fig. 8. We see that in all thr
cases, a simple power-law decay withk is observed fork
!tf, thus validating Eq.~55!. The measurement of the ex
ponentt gives values in reasonable agreement with theo
ical prediction, although forq510, the statistical error is
significant.

V. CONCLUSIONS

In this paper we have studied the spatial aspects of
sistence in one dimensionalq-state Potts model using
mean-field approximation. We have computed the pair co
lation function for persistent spins under this approximatio
and used it to compute the empty interval distribution un
the independent interval approximation. We find dynami
scaling behavior in both these quantities. The time dep
dence of the characteristic length scale and the behavio
the scaling function was found in both cases. We show
analytically within the mean-field approximation the tran
tion from fractal to homogeneous distribution of persiste
spins as the persistence exponent crosses1

2 . We support our
results by numerical simulations in the kineticq-state Potts
model.
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