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We study the persistence properties of The0 coarsening dynamics of one-dimensiogattate Potts model
using a modified mean-field approximatiddMFA). In this approximation, the spatial correlations between
the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the
mean densityP(t) of persistent spins is imposed. For this model, it is known B@) follows a power-law
decay with time,P(t)~t~ %%, where 6(q) is the g-dependent persistence exponent. We study the spatial
structure of the persistent region within the MMFA. We show that the persistent site pair correlation function
P,(r,t) has the scaling fornP,(r,t)=P(t)2f(r/tY? for all values of the persistence exponeift). The
scaling function has the limiting behavif¢x) ~x 2% (x<1) andf(x)—1 (x>1). We then show within the
independent interval approximatighA ) that the distributiom(k,t) of separatiork between two consecutive
persistent spins at timehas the asymptotic scaling forn(k,t) =t~ 2%g(t,k/t?), where the dynamical expo-
nent has the formp=max(1/2¢). The behavior of the scaling function for large and small values of the
arguments is found analytically. We find that for small separatikrst?,n(k,t)~P(t)k™ 7, where 7
=max2(1- 6),26], while for large separations>t?, g(t,x) decays exponentially witk. The unusual dy-
namical scaling form and the behavior of the scaling function is supported by numerical simulations.
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[. INTRODUCTION closely linked to the state of other spins. This interdepen-
dence of spins is crucial as it makes the time evolution at any
In recent times, the notions of persistence and the assocsingle site strongly non-Markovian, which makes the com-
ated persistence exponent has become one of the active tgputation of the persistence exponent highly nontrivial. A
ics of research in nonequilibrium physigs|. In general, the  study of the spatial aspects of the persistence problem is,
persistence probabilit(t) is the probability that a stochas- therefore, important from the point of view of developing an
tic variable ¢(t) remains above or below a certain arbitrary jntuitive understanding of the phenomenon, and also illumi-
value (say, its initial valug for a time interval[0:t]. The  nates the interplay between persistence decay and the under-
idea of persistence is particularly relevant in coarsening SYSying domain coarsening process.
tems, whereP(t) has the natural interpretation of being the * The spatial distribution of persistent sites and its time

fraction of space in the system which remains in the same, q|ytion have been studied previously through numerical
phase, starting from a random initial conﬁgurapon. In thesegimulations in one-dimension&lD) diffusion equatior[3],
systems(as in some other systems alsg(t) typically de- g-state Potts modgHl —7], two-dimensional Ising mod¢B],

cays as a power law at large with an exponent t.hat 'S and one-dimensional Ising model with parallel dynanii&ls
nontrivial to compute and does not appear to be simply '®An analytic study using a rate equation approach under the
lated to other known exponents that characterize the process Y y 9 q bp

The coarsening dynamics of the one-dimensiapatate independent interval approximatigilA) has been carried

Potts model at zero temperature is one of the few cased!t for one-d|m.en3|ona4\+A—_>@ model, which is closely
where the persistence exponeifty) is known exactly. The related to ;D Ising moddb]. It is now generally understood
solution was provided by Derricgt al. through a mapping of from physma} arglumen@s and simulations that for a coarsen-
the process to a coagulation model in steady §@jtdt was N9 Process ird dimensions where the characteristic Ie_ngth
shown that at late timet well beyond the time scale of Scale has the power-law growtt(t)~t'*, the set of persis-
equilibration, the fraction of persistent spins left in a finite tent sites forms a fractal structure with fractal dimensign
system of linear dimensionL scale as Pq(t>|—21|—) =d—2z6 over length scales<t? [7,10]. The distribution is
~L 2% where6(q) is given by the nontrivial expression homogeneous beyond this length scale. Furthermore, since
d;=0, the distribution is expected to be homogeneous over
2_ 2 all length scales i¥>d/z. This has important consequences
1( )] (1)  for systems like the Potts model wheflechanges with the
Potts state. In particular, for Potts model id=1, Bray and
O’Donoghue[7] argued that a transition from fractal to ho-
For timest<L?, it follows that Pq(t)~t*"(‘*). An inter-  mogeneous distribution occurs asrosses . This transition
esting question in this context is about the spatial distributioris also marked by an abrupt change in the dynamical expo-
of spins which are persistent up to any given tim€learly, = nent characterizing the separation between persistent sites.
in a many-body process like the time evolution of PottsThe characteristic length scale was conjectured to have the
model, the probability that a given spin is persistent isunusual dynamical scaling formZ(t)~t® with ¢

1 2
9(Q)=—§+;
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=max(,6). This conjecture based on physical arguments—1), or coagulate with probabilityq(—2)/(q—1). In the
was supported by numerical simulatiof¥. process, persistent 'S|tes are “yvlped out,”' and the surviving

In this paper, we use a mean-field approach to address tf@ndom walkers build up spatial correlations among them-
problem of spatial distribution of persistent sitescjrstate selves. The distribution of |_ntervals be_tweer_w the surviving
Potts model. The essential idea behind this approach is 48ndom walkers at angsufficiently latg time t is described
follows. It is well known that thef =0 coarsening dynamics PY a(Stationary scaling function which is known exactly for
of the g-state Potts model can be mapped to a reaction@ll values ofgq[13]. The average density(t) at timet decays
diffusion process. In this process, the interfaces between difS
ferent species of Potts spins are represented by diffusing par-
ticles A, which annihilate or coagulate upon meeting with
g-dependent probabilities. In the mean-field approach, these
diffusing particles are treated as homogeneously distributed,
with (time dependenidensity equal to the average density in asymptotically{13]. The essential idea behind the mean-field
the original reaction-diffusion problem. This approach has(MF) approximation is to treat the random walkers as form-
been discussed in some earlier works as a heuristic argumeinlg a homogeneous background of average demgity, as
[11] and as a toy model for persistenick?]. We argue that far as the persistent sites are concerned. We define the per-
this approach yields a lower bound for the persistence expasistence probabilit(t) as the probability that the site at the
nent in the Potts model. We then construct an artificial modebrigin is unvisited by any walker till timé. Then, the prob-
which is devoid of spatial correlations among diffusing par-ability that the site the probability that the site is visited by a
ticles, but with persistence exponent tuned to be exactlyvalker between time¢ andt+dt is —dP(t)/dt. Let R(x,t)
equal to the Potts model value. We refer to this model as thge the probability that the site at origin is visited by a walker
modified mean-field approximatidMMFA) and use this ap-  for the first time at timet, whose initial position wax at t
proximation to study the spatial distribution of persistent=0. Within the MF approximation, any walker would sur-
sites ing-state Potts model. vive with probability n(t), and the probability that it will

We outline our main results at this pOint. Within the make a first visit to Origin at timd is given by q(X,t)
MMFA, we show analytically that the correlation length for :\/%(X/tyz)efx?/a [14] It follows that R(x.t)
thelléspatial distributio_n of pgrsistent _spins SC"?"esf@S =n(t)q(x,t). We now integratdr(x,t) over all initial p(;si-
~t i and the equal tlrng pair correlathn f“”Ct.'Wf't) tions x and multiply by the probability that the origin is
(defined as the probability that the spin at origin and thepersistent at time, which is simplyP(t). So we find
point r are persistent at timé) has the scaling form ' '
P,(r,t)=P(t)?f(r/ ) for any value ofd. This shows that IP(t)
the persistent spins have a fractal distribution wath=1 5~ PONMOKy(Y), d=1, ()]
— 26 over length scales<t'? when <3, butd;=0 when

1 . . .
0= 5. We find that the characteristic length scale of the SPa; here K,(t)=/7..q(x,t)dx is the Smoluchowski constant

tial distribution of persistent spins has the unusual scalin%ls] in d=1. After substituting forg(x.t) andn(t), we find
form E(t)~'t¢, where qb:max(%,a)., in agregmgnt yvith the JP(t)/dt=— 0* /tP(1), SO thatP(t)~t“9*(Q), and ¢* (q)
conjecture in Ref[7]. The empty interval distribution itself =(\/§/w)(q—1)/q is the persistence exponent within the

; — (t)-2
has the scaling formn(k,t)=L£(t) “g[t,k/L(D)], where y2'nqei 1191 1t is interesting to compare the mean-field

g(tx)~t"x"" for x<1 and decays exponentially witk prediction for 6 with the exact value of the exponent. For
when x> 1'. The exponentgs and rldepends orY through q=2, 6*(2)=0.225, while the exact value from E€L) is
the relations 4=0(20—1)H(6—3) and 7=maf2(1 3 4 the g=w case, the MF model predicts* ()
—0),20), where H(x) IS the Heay|S|dg step. function. We =0.45, which is to be compared with the exact vali{e~)
support these results with numerical simulations.

Th . d as foll In the followi i =1. Upon extending the comparison to the entire range of
€ paperis arranged as Tollows. 1n the following section, ;a5 ofg, it is clear that the mean-field treatment consis-
we outline the mean-field approach. In Sec. Ill, we introduc

; : ! etently underestimates the value 6f
the MM.FA. anq compute.the paur correlation an_d empty in- We now argue that* (q) is, in fact, a lower bound for
terval distribution of persistent sites to characterize their spa; ' '

) o i ) 6(q). In the mean-field approach discussed so far, it is as-
tial distribution. .Thes.e pre@cnqns are compared W'th. thesumed that the random walkers disappear from the lattice at
results of numerical simulations in tlgestate Potts model in

Sec. IV. We summarize our results and present our conclur-andom at such a rate so _that_ their average density falls as
sioné in‘ Sec. V/ n(t). The actual reactlon—dl_ffusmn process is quite different,
T because only walkers which come very close to another
walker are likely to be removed. Clearly in regions of space
II. THE MEAN-EIELD APPROXIMATION where walkers come close to each other, they are likely to
visit the same site again and again. This effect is much more
In the zero temperature coarsening dynamicsyjatate  within the mean-field approach, where the walkers actually
Potts model id= 1, the interfacial points between different pass through each other, possibly several times before disap-
species of Potts spins perform independent random walks goearing. Thus, it is plausible that for the same average den-
the lattice and annihilate each other with probabilityql/( sity of walkers, a larger number of persistent sites will be

¢ qg-1 1 @
n o~ ——
® q 2t
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visited in the actual reaction-diffusion model, compared to—{—¢ with any arbitraryd’. From the arguments presented

its mean-field analogue. Since this is true for all times, than the preceding section, it is obvious that this would be the

average density of persistent sites in mean-field theory wilkase if the average density were to decay )

be higher than the same in the actual Potts model dynamics. Jmi2(6'1\t) asymptotically. By construction, this model

This would naturally imply that is devoid of spatial correlations among reacting particles
6% (q)<6(q). @) (i.e., it is still mean-fielgl but #’ is now arbitrary. If we now

choose ¢’ = 60(qg), this model is an approximation to the
Interestingly, we show now that the mean-field argumenﬂ'State Potts model, with the simplifying feature that the spa-
presented above yields the correct value for the persistené

| correlation between interfacial points is now absent. We
exponent forA+A— model ind=2. This is not surpris- > all refer to this model as the MMFA for the original Potts
ing, since for this model, the upper critical dimensiordjs

model.
=2, and the mean-field treatment becomes exact above this _ _ _ o
dimension. It can be shown thatdh= 2, the probability that A. Pair correlation for persistent spins within the MMFA

a random walker starting at an an arbitrary point crosses a |n this section, we compute the equal time pair correlation
circle of radiusa around the Origin for the first time dtis function for persistent Spins iq_state Potts model under the
given by the expressiofi6] MMFA. We defineP,(r,t) as the probability that both the
site at origin and the site at>0 are persistent at timte Our
purpose is to computB,(r,t) for variousr.

> a2
t>a’/D, (5) The generalization of Eq3) to this case is

Kao(t)= ————,
2t log(4Dt/a?)

which is the gnalog_ue of Smoluchowski constantdin 2. _ IP(r,1) =2P2(r,t)ir R, (x,t)dx, @
The asymptotic particle density decay far- A— (& model at —o

in d=2 has the forrm(t)=(1/8w)[log(Dt)/Dt] [17]. Upon . N _ o
extending the MF arguments presented previously, we finavhere R,(x,t) is the probability that a particle with initial

that positionx(— o <x<r) will make a first visit to the origin at
timet, without ever crossing in the interval[0:t]. The factor

dP(t) 2 in front takes into account the probability that either of the

ot P(ON(DK,(1), d=2, 6)  sites could be reached by one of the diffusing particles. Un-

like the first caseR,(x,t) is now different forx<<0 and 0

After Substituting fom(t) and Kz(t), and tak|ng the limit =x<r. Forx<0, the constraint of no CrOSSing afs irrel-
a—0, we find thatP(t)~t 2 so that6* =1/2 in d=2. evant for the computation dRr,(x,t), since to reach, the

This result is exact, as has been shown by a rigorous fieldearticle would have to cross the origin first. $J(x,t)

theoretic calculatiofi11]. =R(x,t) simply for x<0, and so

We thus observe that while the mean-field approach, in
general, gives only a lower bound for the persistence expo- J’O R (x,t)dx= ﬁ )
nent, it correctly identifies the essential features that brings e T 2t°

about this power-law decay, i.e., the diffusive motion of in-

terfacial points and the {t decay in their overall density. In For x>0, this is no longer true, ani,(x,t) needs to be
the following sections, we use a slightly modified version ofcomputed separately. The quantity that we need here is
this treatment to study the spatial distribution of persisteng,(x,t), the probability that a diffusing particle whose posi-

sites ing-state Potts model. tion att=0 is x, will reach the origin for the first time &
without ever crossing the poimtin between. TherR,(x,t)
IIl. THE MODIFIED MEAN-FIELD APPROXIMATION =n(t)q,(x,t). To findg,(x,t), let us use the following stan-

) ) dard method. Consider a random walk starting frorix0
Our purpose is to use the mean-field approach to study they 5tt=0 with absorbing barriers at 0 and If the prob-

spatial distribution of persistent spins in thpstate Potts  apility distribution of the positiorz of the walker at time is
model, and in particular, to understand the transition fromy (7 t), then

fractal to homogeneous distribution @grosses . However,

it may be noted that in the mean-field approximation to the Uy(z,1)
dynamics of the Potts model, the largest value ¢éttained Gr(X,0)=— : 9
at q==) is 2/\/m=0.45 which is less than the transition z=0

vfaluez. This problem is _cwcumvemed_ by def|_n|ng an arnfi The expression fowu,(z,t) is known exactly, and the
cial model where we define the diffusing particles as nonm'asymptotic form at large [14] is
teracting random walkers, who can pass through each other.

The model also allows for multiple occupancy of lattice 1 o
sites. The dynamics consists of random walkers being picked |, (z,t)= > e~ (Z=x=2kn?/2t_ o= (z+x—2kr)?/2t
. . X 1
at random and taken out of the lattice at a time-dependent V2t k==
rate, which is tuned to produce power-law decByt) (10
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2 T T T T T that f(x) approaches a constant value in this limit. It is fur-
ther clear that, from the definition of the scaling function as
15F - given by the Eq(15), this constant is unity, since we expect
P,(r,t)— P(t)? asr—o. For convenience of later calcula-
5 1f tions, we approximate the scaling function as
<]
sk | f azaxfzay x<a .
(X) 1 x>a, 17
0 -
L 1 L L L wherea is a number, of order unity.
0 1 2 3 4 5 6 We see that under the MMFA, the pair correlation func-
tion has a scaling form which is same for all valueséof
FIG. 1. Plot ofG(x) vsx. with power-law decay,(r,t)~ P(t)r ~2? for short distances
. _ r<t2. As is well known, power-law decay of pair correla-
from which, we find tion function points to the underlying scale invariance of the
o spatial distribution of the persistent spins. This is character-
q.00t) = 1 D X+2kref(zfx72kr)2/2t istic of a fractal distribution under some circumstances. To
o 2t k=2 see this, let us first defin@(r,t)=P(t) ~*P,(r,t), which is

the probability of finding a persistent spin at a distamce
from another persistent spin. Now, the integidi(R,t)
zflRC(r,t)dr is the total number of persistent spins within a
1 B . ] radiusR of a persistent spin. Clearly, from the scaling form
We note that for>t*<, the k=0 mode is the d0m|2r1ant described above M(R,t)~R% for R<tY2 where d;
term in the sum, and this giveg, (x,t)~\2/7t3xe X"  =max(1-26,0). ForR>t"2 we find thatM (R,t)=RP(t),
+ smaller terms that vanish as/{'?)—o. Clearly in this  which is simply a homogeneous distribution. Thus, if we
limit, we recover ther = term, as we should. It then fol- look at length scaleR<t'?, there is a fractal structure when
lows that #<3%. However, wherd= 1, this scale-invariant structure is
replaced by a few isolated sites, whose number does not

x—2kr
t

e—(z+x—2kr)2/2t. (11)

r r grow with the length scale of observation.
J; Ri(x,D)dx= EG ﬁ ' (12 Clearly, the spatial distribution of persistent spins under-
goes a transition a8 crosses;. Indeed, if we consider time
where scales beyond equilibration time>L?, for <% the total

number of perslistent spins left in the system scalds'as’,
” 2 2 o2 whereas foW= 3, there are only a finite number of persistent
G(x)=1-n+ kgl 27" — g2 57207 (13)  gpins left. This important difference is not adequately re-
flected in the pair correlation function, which has the same
with n:eflez_ After substitution of Eq(8) and Eq.(12) in scaling form for all v_alues ob. In the_ following s_ecti(_)n, we
Eq. (7), we find study another quantity to characterize the spatial distribution
which undergoes a rather significant change in its scaling

IP,(r 1) P r _propertie§ across the t.ran_sition. This quantity is the empty
— —2Py(r,t) >t 1+G| —| |, (14 interval distribution, which is one of the standard tools in the
Vt study of one-dimensional reaction-diffusion processes.

which admits a scaling solution of the form ) o
B. The empty interval distribution
_ oe| T An empty interval, in our convention, is the separation
Pa(r,)=P(0)f W ' (15) between two consecutive persistent sites. The empty interval
distribution (EID) n(k,t) is defined as the number of such
and the scaling functiofi(x) is given by the following ex- intervals of lengthk at time t. For convenience, we also
pression: divide this quantity with the system sid¢ so thatn(k,t)
satisfies the following normalization conditions:
of
= —=—0f(X)[1-G(X)]. 16 o o
2 0x ol ] 19 L n(k,t)dk=P(t), L kn(k,t)dk=1. (19
Let us now consider the limiting behavior of the scaling
function forx<1 andx>1. In the first case, it is clear from Computing the EID directly, even under the mean-field
Fig. 1 thatG(x)~0, and so x/2)(df/9x)=— 0f(x), which  approximation, is nontrivial. Instead, we shall compute it
implies thatf(x)~x 2% asx—0. In the opposite extreme from the pair correlation function using the IIA, where the
G(x)—1 asx—x, and so k/2)(df/9x)~0, which means lengths of successive empty intervals are considered as inde-
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pendent random variables. The A has been a valuable tool T T T T J T T
in the study of one-dimensional problems, and has been suc- 40
cessfully applied to study spatial distribution of persistent

spins inA+A—@ model. Under the IIA, the relation be- 201 .

tweenn(k,t) andP,(r,t) is

P,o(r,t)=n(r,t)+ P(t)‘lfrdx n(X,t)P,(r—x,t).
1
(19

It is convenient to express this relation in terms of the

Laplace transformsC(p,t)=/7C(r,t)e P'dr and n(p,t)
= [Tn(s,t)e Pds, whereC(r,t) was defined in the preced-
ing section. Under these transformations, EtP) maybe
expressed in the form

~  PMOT(.Y)

np,t)y= —————. 20
(p,t) 1+ e (20
From the scaling form foP,(r,t) given by Eq.(15), we
find that
Clp,Hy=P(\I(a,D), (2D
where g=p\/t, and 1(g,t)=J-1.f (x)e"¥dx The lower
limit is put ast ™2
small argument divergence in the scaling function.
Let us first consider the case, whete 3 : In this case the
scaling functionf (x) is integrable, so we put the lower limit
in the previous equation as zero. Using ELy), we find that

0<1
E,
(22

1
I(q,t)=a2”q2"’17(1—20,qa)+ae*qa,

where y(a,x)=[§e”'t* 1dt is the incompletey function.
After substituting in Eq(20) and Eq.(21), and taking the
—oo |limit (keepingq fixed), we find

~ . q
n(p,H)=t=3 P(t)t"2— :
(P4 ® a?%9?%y(1—26,qa)+e 92
(23)
It follows that
—+—1 k
n(k,t)=t"th i) (24
so that
n(p,t)y=t"Yqt¥2P(t)—hy(q)], (25)
which has the same form as Ed23), and h;(q)

=[oh(x)[1—e ¥]dx. After integrating by parts, we find

hy(0)=—G(%)+q[ imxG(x)+G(q)],

x—0

(26)

40+ -

1005 0 5 10 15 20 25 30
qa

FIG. 2. The figure shows the inverse 6{(q) plotted against

whereG(x) = [;h(y)dy andG(q) = [5G(x)e~ ®dx. We as-
sume thatG(x) is integrable, so that Iig(nﬂoxG(x)=0 and

G()=0. Finally, we have

1
a?q??y(1-26,qa) +e 92

G(q)= (27)

Now we may try to deduce the behavior of the function
G(x) at large and small arguments from its Laplace trans-

instead of zero to take care of possible form(LT) given by the previous equation. To find the behav-

ior of G(x) nearx=0, we use the standard formyl&8]

limt~?g(t)=lim
t—0

(28)

S—®©

where é(s) is the LT of g(t). Now, for large q, y(1
—26,qa)=I'(1—26), so thatG(q)=a 2% 2%/T'(1—26)

as q—. It follows that lim_ x*~2G(x)=a"2"(26

—1)!IT'(1—26) from which we find

720X26’71
S~ Ze—nir(-20 *° 9
and, after using the relatiom(x) = — dG/dx,
h(x)~x"20=9  x—0. (30)

The behavior ofG(x) at largex, one has to look for the
singularities ofG(q) in Eq. (27). If G(q) has a singularity of
the formG(q) ~ (q—qg*) ~”, then upon inversion of the LT,

it follows that G(x)~x""1e?"* as x— [18]. In order to
find the singularity, we plotted the denominator of E27)
against its argumentFig. 2. We find that the function
crosses zero at one point in the negatiyaxis. By careful
numerical analysis using bisection method, we have deter-
mined this crossing point to be gt a=—\, where the nu-
merical constanh=0.32 for #=2 and A=0.85 for §=3.

This implies that the leading term in the decay®fx) at
large x is exponential, i.e.G(x)~exp(~[Na]x) as x— oo,
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with a possible power-law prefactor. Consequently, the scalwhere
ing functionh(x) also has similar exponential decay at large

X.

h(x)~eMax  x>1. (31

i S(X)+ —x(1+8) 7|

P0=1 5

1
BA+p° 39

The scaling function has a rather unnatu¥dlinction sin-

We also determine the characteristic length scales of thgularity at the origin. However, a more careful analysis show

distribution using the scaling form far(k,t). These may be
defined as the ratios of moments of the distribution.

L) =1n(t)/1m-1(), m=0,1,2...,

where | ,(t)=2n(k,t)k™ are the moments ofn(k,t).
Clearly,L,(t)=P(t) *~t? by definition, whereas all higher
order length scales

(32

Li(H)~t¥2  j>1, (33
which follows from the dynamic scaling form given by Egs.
(24), (30), and(31) for n(k,t).

We now continue our study of empty interval distribution
for the case, wheré=3. Although the MMFA allows us to

study arbitrarily large values of, we restrict ourselves to

the regimed<1, since our basic aim is to study the persis-

tence ing-state Potts model, wheré(q)<1. Furthermore,
for g=~ wheref=1, n(k,t) can be found exactly7] and is
known to be a pure exponential.

For $<6<1, the scaling functiorf(x) has a noninte-
grablex 2% singularity neax=0 (we do not study explicitly
the logarithmic singularity occurring fat=3). We integrate
by parts and find

20

_ o~ 12 _ _ _
29_1“0 12g-qt M2_ g1-26¢ qa_ 20-1

I(q,t)=

(34

N -

1
><7(2—20,qa)]+ae*qa, 6=

Let us now define\=p/P(t)=qt"Y?P(t) " . Fort—»
and finiteh, we have

26

a
_ 6—1/2
l(a.)=5,—t N (35)
After substitution in Eq(21) we find
260
o _ 0
C(p't)_P(t){ze—lt +)\P(t)}' (36)

We define the constafg=t’P(t)a??/26—1, in terms of

which C(p,t)=8+1/\. Now we substitute in E¢(20) and
find

n(p,t)=P(t A MEB (37)
PO=PO T B s
Upon inversion of the LT, we find that
n(k,t)=P(t)?¢[kP(t)], (38)

that for any finite(but still large time t, the divergence at
origin is only power-law, but with a different exponent than
the previous case#< 3). We start with the expression given
by Eq.(21) and Eq.(34) for C(p,t). After keeping the lead-
ing finite t correction, we find that

- 1
C(p,t)=ﬁ+X—,Bt’ﬁ(z'g’l))\”’l. (40)

For purposes that will be clear later, let us defingk,t)
=kn(k,t) so thatz,m(k,t)=1. We also define the associ-

ated Laplace transforrm(p,t). The Laplace transforms are
related through

an(p,t)
p

m(p,t)=— (41)

Using the expression E420) for n(p,t), we find that

P(t)C'(p,t)

P T

p.t)= (42

whereC’(p,t) =aC(p,t)/dp, and is given by the expression

1
C'(p.t) +(260— 1)ﬁtf’<2“>>\2<91>].

P(t)|\2
(43)

After substitution in Eq(42) and taking the limitt— oo,
we find

_ 1+(26_ 1)Bt*0(20*1))\29
- [1+A(1+B)]?

m(p,t) : (44)

which gives the scaling forms

m(k,t)=P(t)y[t,kP(t)], n(k,t)=P(t)2d[t,kP(t)],

(45)
where
XD (t,X) = i(t,x) (46)

by definition. The Laplace transform of the scaling function

P(t,x) is

1+ (20_ 1)181:70(2971))\20
[1+A(1+8)]?

Pp(t,N)=

(47)

We notice that if the finitet correction term is not in-
cluded, Iimﬁm)\zﬁz(t,)\) is finite, and in that case, the small
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argument divergence ofs(t,x) will be sharper than any 10—
power law. This is what is reflected in the appearance of the t=10" —
S function in Eq.(41). However, when this term is included, ek \ t=8x 10° - ]
the multiplying factor has to b&?~2? in order to make the

resulting expression finite as—. This implies that the
small x divergence fory(t,x) has the power-law form
P(t,x) ~t~ 02011720 for smallx. From Eq.(48), we find
a similar power-law divergence i (t,x) also, 1k

(48)

slope =-1.38 ~me ]

D(t,x)~t R~ x=20 y<1,

PRy PR S
0 100 10t

R |1
e w110
z:r/\ﬁ

101
L . . 103
In the largex limit, ®(t,x) becomes time independent,

and decays exponentially withas in Eq.(39), i.e.,

FIG. 4. Same as Fig. 3 far=5. The slope of the straight line is

e X/1+B 26(5)=1.38, which is the MMFA prediction.

D(t,x)= . x>1, (49

(1+8)?
The scaling functiong(t,x)=h(x) when <3 and
The characteristic length scales are easy to computegy(t,x)=®(t,x) when#=3. In general, the small argument
From the scaling form, it follows that all the characteristic behavior ofg(t,x) has the power-law form
lengths have identical asymptotic scaling behavior,

g(t,x)~t"¥x"7, x—0, (53
Li(h~t?, j=12,.... (50)
where the exponentg and  are given by
The difference in the asymptotic scaling behavior of the
characteristic length scale #scrosses; may be seen as a 1
competition between two length scales, the diffusive length p=0(26— 1)H( 0— o T max26,2(1-0)],
scaleLp(t)~ /Dt which gives the mean separation between (54)

two random walkers, and the persistence scalgt) _ o _
=P(t) ~*~t? which is the mean separation between two per-and H(x) is the Heaviside step function. For large the

sistent spins. The characteristic length scale is dominated t8caling function is time independent and decays exponen-

the larger of the two, i.e., we may write tially with x. We also note from the scaling form that over
small distance&<t?,

: (5D k<t?,

n(k,t)~P(t)k™7, (55

1
L(t)~1?, ¢:ma><§,0

where £(t) is defined through the dynamical scaling form WNerer is given by Eq.(54).

for n(k,t),
IV. NUMERICAL RESULTS
n(k,t)=£(t)‘2g(t,EL). (52 We studied the quantitieB,(r,t) andn(k,t) numerically
(t) by simulating the kinetics ofj-state Potts model with ran-
- dom initial conditions. The time evolution of spin configura-
A tions via Glauber dynamics is implemented using the map-
Z_'j\ t=10— ping of this dynamics to a reaction-diffusion problem, as
10 mentioned in the Introduction. In this procedure, a set of
0 103~\"-|"'|'"|"'|"'|"'
s N =10 —
1¥ LA b= X100 ==
t=16%10° -
® 10 1 slope = ~1.67 ~rn
10! PR EESPEY BERETIPY PR NI PR heg
0?1 ot 1 10 w1 1t 3
1=r/Vi 3
10k 4
FIG. 3. The scaled pair correlatidiix) = P(t) “2P,(r,t) is plot- .
ted against the dimensionless scaling variabte'/\t for g=2 on Uy '1'0'_1‘ i : "“1'0‘ l['}, 1;], pr
a logarithmic scale. The straight line is a guide to eye, and has slope z=rjVi

26(2)=0.75 , which is the MMFA prediction. The timieis mea-
sured in MC steps and distancels measured in units of lattice
spacing.

FIG. 5. Same as Fig. 3 fay=10. The slope of the straight line
is 26(10)=1.67, which is the MMFA prediction.
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1¢° ST T T T 1° T
102 F ? 102 . t=103‘—"-
L t=8x10° -
10 10k X ]
1F =30 X 10% e
3 b 3 lf slope = -1.67 1
z LTS “ R
107F
10_3 - 10»2 F E
w0 f . e , 1
PPrY SN IR SRR SO L P I P Y e b
0 w0 1wt 1 10w o 0 10?102 0w 1 10 w e
I X

FIG. 6. The scaled EIDh(x)=tn(k,t) is plotted against the FIG. 8. Same as Fig. 10 fgr=10. The straight line in the figure
dimensionless scaled separatioak/t for g=2 Potts model. The gives the theoretical prediction=26(10)=1.67 for power-law de-
excellent scaling collapse validates the scaling form given in Eqcay at smalk (see discussion in tetThe timet is measured in MC
(24). The straight line has slope=2[1— 6(2)]=5/4, which is the  steps and distandeis measured in units of lattice spacing.
MMFA-IIA prediction. The timet is measured in MC steps and
distancek is measured in units of lattice spacing. nent measurements, we have used only the(batdinned
data.
diffusing particlesA are initially distributed at random on the In Figs. 3—-5, we have plotted the scaling functigr) for
lattice with a certain average initial density (which we fix  the pair correlation functiof,(r,t) against the scaling vari-
as ;). When two diffusing particles meet, they annihilate abler/+/t for threeq values,q=2,5, and 10. We find excel-
each other or coagulate with probabilityg}/1 andg—2/q  lent scaling collapse for all three values @f which is in
—1, respectively. We count one Monte CafMC) step in  agreement with the dynamic scaling picture provided by the
the simulation after the position of every particle in the lat-MMFA in Eq. (15). In the figures, we find power-law decay
tice has been updated once. Persistent sfsites at any  of f(x) for smallx, with a sharp crossover to the flat long-
time t are those sites which have not been touched by glistance behavior, which is also in agreement with the as-
random walker till that time. All the simulations were done sumption we made in Eq17). We also note that the constant
on a lattice with 27 sites, and the results were averaged ovem introduced in Eq(17) is in fact very close to one.

100 different starting configurations. In order to check the In Fig. 10, we plot the characteristic length scéalg(t)
different dynamic scaling behavior f@#<3 and 6=3, we against timet for g=2,5 and 10 and measure the dynamical
did our simulations for three different values@# 2,5, and  exponents. The observed slopes of the lines are systemati-
10. For later reference, we note that from EL, the corre-  cally higher than the theoretical prediction in E&§3) by
sponding values of the persistence exponent®®)=3/8  around 0.05, while the statistical error in all the three cases
=0.3750(5)~0.6928, and#(10)~0.8310. In Figs. 3—5, was only~10 * or smaller. The observed deviation could be
and later in Figs. 6—9, we have employed logarithmic bin-possibly due to the fact that the asymptotic behavior is not
ning of the data in intervals of size I.§n=1,2,...)since  fully reflected over the time scales which we used. The num-
the statistical noise was considerable. However, for all expober of persistent spins left in the system falls rapidly with
time for high values ofj, and so we were forced to restrict

103 N b I | 1 1 M

10 F t=10° — B B B BN
L\ WP F 4

10F 5 t=8x10° -]

1 t= 32X 10° -+ ] 1’\‘ .
L slope = -1.38 -~ S i e T i
* ek 7 St .

2

3 3 g 0 T _ '

10 108 F - \--‘._'_:.\\1. 2 4
0'F 3

1,

| B -

M LY

1078 =—

10 102 10! ]

wal
10 1w
T

1t

10°

10-3 -

4
1~
1
'
¥
]

b
YN

107"

10

10 10* 10t

FIG. 7. The scaled EIBDP(t,x)=tn(k,t) is plotted against the

scaled separatior=KkP(t) on a logarithmic scale foq=5 Potts FIG. 9. In the figuren(k,t)/P(t) is plotted againsk for two
model. We see that the scaling function is explicitly time dependentvidely separated values bfor each value ofj=2,5, and 1Qtop to

for smallk, but is time independent for larde The straight line in  bottom). In all the cases, the function is independenttdbr k
the figure gives the theoretical prediction=26(5)=1.38 for  <t?, and shows the power-law decayk ". We measurer
power-law decay at smal (see discussion in textThe timet is =1.32£0.03, 1.41%0.04, and 1.62£0.22 forq=2, q=5, andq
measured in MC steps and distarkcis measured in units of lattice =10, respectively. The corresponding MMFA-IIA predictions are,
spacing. to the same accuracy, 1.25, 1.38, and 1.66.
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10*

tion supports the theoretical prediction based on MMFA, and
shows that in this regime, the scaling function has explicit
time dependence. To show this more clearly, and to verify
the predicted time dependence, we plotted the quantity
n(k,t)/P(t) againstk for three widely spaced values tfor

all threeq values studied in Fig. 8. We see that in all three
cases, a simple power-law decay wkhs observed fork
<t?, thus validating Eq(55). The measurement of the ex-
ponentr gives values in reasonable agreement with theoret-
e v ical prediction, although foq=10, the statistical error is

1 10 1¢? 1¢° 10* significant.

1P

107

L2(t)

10

FIG. 10. The figure shows the characteristic length stale) V. CONCLUSIONS
(measured in units of lattice spacing, definition in jegtotted
against timet (measured as number of MC steps a logarithmic

scale for three Potts valugs=2, 5, and 10. The measured slopes g Lot : )
of the lines are, respectively, 0.5507, 0.7391, and 0.8672. The comean field approximation. We have computed the pair corre

. ' o fation function for persistent spins under this approximation,
responding theoretical predictions are, to the same AcCUraCYnd used it to compute the empty interval distribution under
0.5000, 0.6928, and 0.8310. p pty

the independent interval approximation. We find dynamical
scaling behavior in both these quantities. The time depen-
previous simulations over longer time scales have shown th ence O.f the cha_racterlsuc Iength scale and the behavior of
presence of an additive power-law correction to the € sc_allng fqngtlon was fouf‘d in both cases. We showgd
asymptotic scaling behavid] analytically within the mean-field approximation the transi-
)I/n IF:)igs 68 Wge check the.dynamic scaling form Eif) tion from fractal to homogeneous distribution of persistent
for n(k,t) agair;st the scaling variable=k/t? for three val- spins as the persistence exponent croése_We_support our
ues ofcizz 5, and 10. We find that fay=2, excellent scal- results by numerical simulations in the kinetjestate Potts

ing collapse is obtained with= 3 (Fig. 6). For smallx, we model.
find power-law decay of the scaling function, which crosses

over to fast exponential decay at largd-or higher values of

q [where 6(q)> %], we find that with¢= 6, we find very This research was supported in part by Grant {MR
good scaling collapse for>1. But for x<<1, we find sys- 008845) from the U.S National Science Foundation. The
tematic deviation from scaling collapse, which was also ob-author would like to thank P. Ray for a critical reading of the
served earlier by Bray and O’Donogh{ig]. This observa- manuscript and suggestions for improvement.

In this paper we have studied the spatial aspects of per-
sistence in one dimensionalstate Potts model using a

ourselves to time$=<32000. In fact, even fog=2 case,
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